What Are The Best Telescope Eyepieces | 2020 Guide

So you are looking to buy a telescope or already have one but are wanting the best telescope eyepieces to get better detail in your views. Here is what to look out for and the sizes that matter when choosing an eyepiece collection for your telescope.

What are the best telescope eyepieces? If you’re wanting the best telescope eyepieces, look for quality built types like those from Tele Vue, which may cost you that bit more. Select ones that fit your telescope and your purpose. Size-wise, consider a 10-14 mm for general use, a 7-10 mm as a basic workhorse, a smaller size for detailed views (e.g. of planets), and a larger one for finding objects.

A table of sizes and purposes are listed below in this telescope eyepieces guide.

In a hurry? Check out the top brand, Tele Vue, at Amazon.

Eyepieces are important components of your telescope. An eyepiece contributes to half of the optics in a refractor telescope and about a third in a reflector. Thus, choosing the right eyepiece will improve your experience.

Navigate This Guide

A typical eyepiece set would cover low power, medium power, and high power.

The eyepieces that come with a new telescope are often the 9 mm and 25 mm, which are the basic working horse type.

If included, the 2x Barlow lens will double the magnification of the eyepieces, meaning effectively you’ll also have 4.5 mm and 12.5 mm eyepieces with your 9 and 25 mm inclusions.

Barlow lenses come in other sizes apart from 2x. I cover more on using a Barlow lens in this article about using a Barlow lens.

This post may contain affiliate links, which means I may receive a commission, at no extra cost to you, if you make a purchase through a link. Please see my full disclosure for further information.

What to consider about that best telescope eyepiece set

extra eyepieces, the best eyepieces
A few good quality eyepieces rather than a set?

If you are thinking of buying a ready-compiled eyepiece kit, it’s best to check whether the kit includes the telescope eyepiece sizes that are best for you and whether some will be surplus.

A few good quality eyepieces may be a better investment than a set with extras you won’t use.

That aside, a set that includes filters and lens may be the best telescope eyepieces for beginners especially to get accustomed to their use and gain an understanding of the construction and mechanics.

The Best Eyepieces For Your Telescope

If you want better views of the details on planets, buy yourself additional eyepieces to those that come with the telescope.

Apart from better quality optics, you will get more out of your telescope with extra eyepieces that give you the right magnification and field of view for your viewing objective. 

Plössl eyepieces, Tele Vue is a top named brand in eyepieces – Click for prices at Amazon

It’s about enhancing your experience. Most new telescopes come with eyepieces but these are not always the best quality or give you the best views possible with the telescope.

This telescope eyepiece guide covers some main features and metrics to know in buying telescope eyepieces.

Viewing Comfort & Usability

You want comfort while observing. And, of course, you want eyepieces that you’re going to use. So their construction and mechanics matter. Eye relief is another.

Construction & Mechanics

Features to look out for include the barrel size and the type of lens and its coating.

Eyepiece Diameter

First up, take note of the barrel size on your telescope, i.e., the diameter of the eyepiece slot. Most are either 1.25″ or 2″. You will need to shop for eyepieces matching that diameter.

Or alternatively, you could search for an adapter if you really need to use a different diameter of the eyepiece to that of the barrel.

Type Of Optical Lens

You can get optical lenses with as many as eight elements. These are the more sophisticated eyepiece designs for which you’ll pay extra.

One thing to know is that not all eyepieces suit every telescope. Plössl eyepieces, which have four lens elements, for example, are not recommended for fast telescopes (f/5 or lower) or Dobsonians.


Fully multi-coated (FMC) glass optics enhances the transmission of light rays. This provides for high achromatic photos of distant objects such as Venus and Mars.

Eye Relief

Eye relief is the max distance where you can position your eye away from the top eyepiece lens and still see the full field of view.

Having your eye jammed up close say with a 5 — 8 mm eye relief can become uncomfortable.

Eye relief especially matters if you need to wear eyeglasses while observing. This may be the case if you have strong astigmatism. For this, look for long eye relief above 15, possibly 18–20 mm, to help.

Size Considerations

As always noted, the smaller the eyepiece focal length the greater the magnification.

Best eyepiece size per purpose

EFL (mm)Use
2-4.9 mmGive very high magnification. Can be very difficult to use except under perfect observational conditions and viewing the very bright objects, like the moon.
5–6.9 mm Good for bright objects such as the moon and bright planets. Very high power, so work best with steady observational conditions.
7–9.9 mmVery comfortable high magnification eyepieces. Excellent for observations of bright objects. A basic working horse for any eyepiece collection.
10–13.9 mmGeneral use. Good for all objects including bright nebula and galaxies. Provide a useful mid/high range magnification.
14–17.9 mmYields effective mid-range magnification and will help resolve globular clusters, galaxy details, and planetary nebulae.
18–24.9 mmWork well for wide-field and extended objects. These are mid-range magnification for viewing objects such as galaxy clusters and large open clusters.
25–30.9 mmWorks as a finder eyepiece. Use these to locate objects. They are extra wide field eyepieces, which are also useful for viewing large nebula and open clusters.
31-40 mmWork even better as finder eyepieces. Get excellent extended views and large star fields.

Visual Impact

Telescope eyepiece Field of View

The field of view, measured in degrees, is how much night sky you will see.

best eyepiece, field of view
Diagram showing the field of view. Source: Randy Culp

The size of the eyepiece field-stop determines the apparent (AFOV) or the width of the light circle seen when looking through the eyepiece. 

The larger the AFOV, the more sky you’ll see at a certain magnification.

So you’ll need to know the AFOV of the eyepiece. A standard Plossl eyepiece, for example, has an AFOV of 50°.

The apparent angular sky width ranges from 40° to 100°.

The true field of view (TFOV) is the amount of sky you will really get to see.

What this means is that if you have two eyepieces with the same AFOV, say 100°, but with different FLs, e.g., 13 mm and 21 mm, each will show a different amount of the sky or TFOV. The 13 mm has nearly twice the magnification of the 21 mm and so you will see an object in the sky nearly twice as big. Because both give 100° circle, the 13 mm with have a smaller TFOV because you are only fitting in half of the image from the 21 mm.

TFOV = Eyepiece AFOV ÷ magnification.


There is a limit to magnification. A rule of thumb is to stay within twice the telescope’s aperture in millimeters.

Or, in inches, multiply the aperture by 60 (some say 50x is better given average atmospheric conditions) for the maximum usable magnification of your telescope under normal conditions.

Observing Strategies

Focal Length of Eyepieces

Eyepieces usually have their focal length marked on the piece.

By changing eyepieces you change the magnifying power of your telescope. Shorter focal lengths correlate with higher magnifications.

How To Work Out The Eyepiece Focal Length To Achieve a Certain Magnification

Telescope Focal Length ÷ Magnification = Eyepiece Focal Length (FL)

Example: A telescope with a focal length of 800 mm and you are wanting magnification of 200x requires an eyepiece of 4 mm FL.

Tip: Always make sure you are using the same units, e.g., millimeters (mm).

You need to know the limits of your telescope’s magnification range (minimum and maximum usable power) when buying eyepieces, as the aperture size will restrict how far you can go.

Calculating Exit Pupil

What is the exit pupil? It is the diameter of the light beam exiting the eyepiece and entering your eye. By and large, the greater the magnification, the smaller the exit pupil.

Also, the larger the exit pupil (ep), the brighter the image you are likely to see. But the limit is no more than 7 mm and no less than 0.5 mm (the average user’s pupil diameter under dark condition). Otherwise, the light is wasted.

How To Calculate Exit Pupil For An Eyepiece

Exit Pupil (ep) = Eyepiece FL ÷ Telescope f/ (Focal Ratio)

The useful exit pupil can vary from 0.5 to 0.7 mm minimum and from 5 to 7 mm maximum, depending on light conditions and the users’ age 1.

Working Example

Let’s take the Skywatcher 120 mm (4.7″), included in my article covering the best telescopes for planet viewing. It has f/7.9 and focal length 900mm. It comes with eyepieces with focal lengths of 5 mm and 20 mm. The maximum useful magnification is 283x.

Magnification of the two included eyepieces are 45x (with the 20 mm) and 180x (using the 5 mm).

The 5 mm is not bad, but for the best telescope eyepiece for viewing planets in detail, there’s room for improvement.

What’s the best telescope eyepiece for viewing planets?

What’s the best telescope eyepiece for planet viewing? If you want good views of Saturn’s rings, for instance, you’ll probably need something that will give you 200x or 240x magnification. So in choosing the best eyepiece, divide the focal length of your telescope by 200 and 240 to give you the eyepiece focal length (mm).

How do I get this?

To calculate the eyepiece FL, take the telescope FL (e.g. 900 mm) and divide it by the magnifications (200x, 240x).

EFL = TFL/magnification

This gives you 4.5 mm for the 200x and 3.75 mm for the 240x. As seen, a smaller focal length corresponds to a higher magnification.

Note: in practical terms, reaching magnifications over 200x could require clear atmospheric conditions, so your location will affect the outcome. (I wrote this article that covers dark sky places for stargazing.)

How To Choose Eyepieces For Your Telescope

Calculating Eyepieces For A Set

Using the Skywatcher (TFL 900 mm f/7.9) as an example, we start with half the telescope’s focal ratio (f/) as the eyepiece focal length, i.e., 4 mm.

This gives us a 225x magnification. Using magnification increments of 1.5x (with eyepiece increments usually 1.4x, 1.5x, or 1.6x), this will give us the exit pupil (ep) for each.

Eyepiece FL based on a telescope with 900 TFL and f/7.9:

EFL (mm)Exit PupilMagnification
4.00 mm0.51 ep225x
6.00 mm0.76 ep150x
9.00 mm1.14 ep100x
13.50 mm1.71 ep67x
20.25 mm2.56 ep44x
30.38 mm3.84 ep30x
45.56 mm5.77 ep20x
68.34 mm8.65 ep13x

So, you could look at eyepieces with focal lengths between 4 mm and 45 mm. Anything that gives an exit pupil greater than 7 mm is usually wasted. The limit of 7 mm comes from it being the average pupil diameter of youthful dark-adapted eyes. But it is worth noting that this decreases with age 1.

What Are The Best eyepieces for fast telescope

The general idea is that a fast telescope has a short focal length (f/7 or below), which produces a wider field of view of the sky than that of a long focal-length telescope.

What would be the best eyepiece for a fast telescope? Not all eyepieces work well in fast scopes. Coma image distortion worsens with fast telescopes, say f/6 or lower, and correction is needed to improve views. As a general rule, high-end types, like Tele Vue Plössl eyepieces, work best as they are well-corrected for coma effects seen with fast scopes.

best eyepieces for fast telescope are those well corrected for coma distortion
Coma distortion is seen with uncorrected f/3.9 Newtonian telescope (left image) compared with that seen with a Baader Rowe coma corrector (right). Source: Rawastrodata CC BY-SA 3.0

Best Brands For Best Eyepieces For Telescopes

Who makes the best telescope eyepieces? Many consider Tele Vue as the best telescope eyepiece brand, especially when it comes to the Nagler type, for the range of focal lengths. You’ll find these eyepieces at reasonable prices at Amazon – See details.

Some other good brands of eyepieces for general observing of the night sky include:

  • Gosky Plössl eyepieces
  • Celestron X-Cel LX
  • Celestron 93220
  • Celestron 93432 Luminos
  • Baader Hyperion
  • Orion Lanthanum
  • Orion 8728 Sirius Plössl eyepieces
  • Some users also swear by GSO.

Information Sources

  1. Jay C. Bradley, Karl C. Bentley, Aleem I. Mughal, Hari Bodhireddy, Sandra M. BrownJ “Dark-adapted pupil diameter as a function of age measured with the NeurOptics pupillometer”. Refract Surg. 2011 Mar; 27(3): 202–207.  Published online 2010 May 17. doi: 10.3928/1081597X-20100511-01

Image Credits

  • Featured image source: Nick Kinkaid, Attribution-NoDerivs 2.0 Generic (CC BY-ND 2.0)
  • FOV, Randy Culp, https://www.rocketmime.com/astronomy/Telescope/Magnification.htm

Imaging Earth

Imajnearth.com is where you'll find info about tech for capturing views of Earth and sky from afar. We do the research to find you the information you need to help you in choosing astronomy telescopes and binoculars, drones, and other gear for remote nature viewing.

Recent Content